About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SODA 2004
Conference paper
Linear Phase Transition in Random Linear Constraint Satisfaction Problems
Abstract
Our model is a generalized linear programming relaxation of a much studied random K-SAT problem. Specifically, a set of linear constraints C on K variables is fixed. From a pool of n variables, K variables are chosen uniformly at random and a constraint is chosen from C also uniformly at random. This procedure is repeated m times independently. We are interested in whether the resulting linear programming problem is feasible. We prove that the feasibility property experiences a linear phase transition, when n → ∞ and m = cn for a constant c. Namely, there exists a critical value c* such that, when c < c*, the problem is feasible or is asymptotically almost feasible, as n → ∞, but, when c > c*, the "distance" to feasibility is at least a positive constant independent of n. Our result is obtained using the combination of a powerful local weak convergence method developed in Aldous [Ald92], [Ald01], Aldous and Steele [AS03], Steele [Ste02] and martingale techniques. By exploiting a linear programming duality, our theorem implies some results for maximum weight matchings in sparse random graphs G(n, ⌊cn⌋) on n nodes with en edges, where edges are equipped with randomly generated weights.