About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE T-ED
Paper
Noniterative compact modeling for intrinsic carbon-nanotube FETs: Quantum capacitance and ballistic transport
Abstract
In this paper, an analytical model of intrinsic carbon-nanotube field-effect transistors is presented. The origins of the channel carriers are analyzed in the ballistic limit. A noniterative surface-potential model is developed based on an analytical electrostatic model and a piecewise constant quantum-capacitance model. The model is computationally efficient with no iteration or numerical integration involved, thus facilitating fast circuit simulation and system optimization. Essential physics such as drain-induced barrier lowering and quantum capacitance are captured with reasonable accuracy. © 2010 IEEE.