About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IRPS 2015
Conference paper
Non-volatile memory as hardware synapse in neuromorphic computing: A first look at reliability issues
Abstract
A large-scale artificial neural network, a three-layer perceptron, is implemented using two phase-change memory (PCM) devices to encode the weight of each of 164,885 synapses. The PCM conductances are programmed using a crossbar-compatible pulse scheme, and the network is trained to recognize a 5000-example subset of the MNIST handwritten digit database, achieving 82.2% accuracy during training and 82.9% generalization accuracy on unseen test examples. A simulation of the network performance is developed that incorporates a statistical model of the PCM response, allowing quantitative estimation of the tolerance of the network to device variation, defects, and conductance response.