About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Applied Physics Letters
Paper
Neutral E' centers in microwave downstream plasma-enhanced chemical-vapor-deposited silicon dioxide
Abstract
We have utilized electron spin resonance and capacitance versus voltage measurements to study E' centers generated by the photoemission of electrons into silicon dioxide films prepared by plasma-enhanced chemical vapor deposition (PECVD). The oxides were deposited on crystalline silicon substrates downstream from a microwave discharge. The E' center is an unpaired electron in a nonbonding sp3 hybrid orbital on a silicon bonded to three oxygen atoms. In conventional thermal SiO2 films on silicon, E' centers are the dominant deep hole traps. However, the E' centers generated in the PECVD oxides are generated by electron injection into the oxide and are almost certainly electrically neutral. Our results unequivocally demonstrate fundamental differences in the point defects in thermally grown SiO2 on silicon and PECVD oxides.