About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Materials Chemistry B
Paper
Nanoscale organization of proteins via block copolymer lithography and non-covalent bioconjugation
Abstract
Thin films of cylinder-forming biotinylated poly(ethylene glycol)-polystyrene (PEG-b-PS) block copolymers were studied as a means to produce protein patterns. The orientation of the PEG cylinders depended on the end group functionality as well as on the preparation conditions. In the case of perpendicular cylinders, immobilization of single streptavidin molecules could be achieved. This immobilization was controlled by varying the amount of biotin in the films by mixing with non-functional PEG-b-PS. © The Royal Society of Chemistry 2013.