About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Rheology
Paper
Shear and time-dependent rheology of a fully nematic thermotropic liquid crystalline copolymer
Abstract
Rheological measurements are reported for a fully nematic thermotropic liquid crystalline copolyester composed of 80% p-hydroxybenzoic acid/20% poly (ethylene terephthalate). The polymer displays shear thinning behavior with a constant power-law index over eight decades of shear rate; no shear-independent plateau (region II) is observed. Dynamic time sweeps indicate a high sensitivity of the rheological parameters to thermal history, apparently resulting from crystalline annealing. These annealing effects could be erased by appropriate thermal cycling. Torsional measurements (cone-and-plate) were limited at high shear rates by the occurrence of edge fracture. This instability was typically accompanied by an unusual sample texture composed of concentric rings, which was particularly distinct when offgassing had occurred in the polymer melt. © 1990, The Society of Rheology. All rights reserved.