About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
EMBC 2016
Conference paper
Multi-scale classification based lesion segmentation for dermoscopic images
Abstract
This paper presents a robust segmentation method based on multi-scale classification to identify the lesion boundary in dermoscopic images. Our proposed method leverages a collection of classifiers which are trained at various resolutions to categorize each pixel as 'lesion' or 'surrounding skin'. In detection phase, trained classifiers are applied on new images. The classifier outputs are fused at pixel level to build probability maps which represent lesion saliency maps. In the next step, Otsu thresholding is applied to convert the saliency maps to binary masks, which determine the border of the lesions. We compared our proposed method with existing lesion segmentation methods proposed in the literature using two dermoscopy data sets (International Skin Imaging Collaboration and Pedro Hispano Hospital) which demonstrates the superiority of our method with Dice Coefficient of 0.91 and accuracy of 94%.