About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
NeurIPS 2019
Conference paper
More is less: Learning efficient video representations by big-little network and depthwise temporal aggregation
Abstract
Current state-of-the-art models for video action recognition are mostly based on expensive 3D ConvNets. This results in a need for large GPU clusters to train and evaluate such architectures. To address this problem, we present an lightweight and memory-friendly architecture for action recognition that performs on par with or better than current architectures by using only a fraction of resources. The proposed architecture is based on a combination of a deep subnet operating on low-resolution frames with a compact subnet operating on high-resolution frames, allowing for high efficiency and accuracy at the same time. We demonstrate that our approach achieves a reduction by 3 ~ 4 times in FLOPs and ~ 2 times in memory usage compared to the baseline. This enables training deeper models with more input frames under the same computational budget. To further obviate the need for large-scale 3D convolutions, a temporal aggregation module is proposed to model temporal dependencies in a video at very small additional computational costs. Our models achieve strong performance on several action recognition benchmarks including Kinetics, Something-Something and Moments-in-time. The code and models are available at https://github.com/IBM/bLVNet-TAM.