About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ACS Nano
Paper
Measuring the three-dimensional structure of ultrathin insulating films at the atomic scale
Abstract
The increasing technological importance of thin insulating layers calls for a thorough understanding of their structure. Here we apply scanning probe methods to investigate the structure of ultrathin magnesium oxide (MgO) which is the insulating material of choice in spintronic applications. A combination of force and current measurements gives high spatial resolution maps of the local three-dimensional insulator structure. When force measurements are not available, a lower spatial resolution can be obtained from tunneling images at different voltages. These broadly applicable techniques reveal a previously unknown complexity in the structure of MgO on Ag(001), such as steps in the insulator-metal interface. © 2013 American Chemical Society.