About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review B
Paper
Master-equation approach to stochastic models of crystal growth
Abstract
A master-equation approach is formulated to obtain kinetic equations for stochastic models of the crystal-vapor interface. The properties of two Ising-type models are studied in stable and metastable states. General transition probabilities for the adsorption and evaporation of atoms at the interface are introduced, which may account for different types of dynamic behavior. Marked dependence of the interface kinetics upon the details of the transition probabilities is found, in contrast to the case of homogeneous systems. © 1974 The American Physical Society.