About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IRPS 2013
Conference paper
Making reliable memories in an unreliable world (invited)
Abstract
Reliability is a key concern for VLSI circuits especially so for latches and memories due to their small feature sizes. Particularly, for SRAM cell designs Bias Temperature Instability effects have significant implications on functionality and performance. Here we propose through simulation and modeling an efficient statistical methodology to evaluate and minimize the aging of memory chips. Redundancy has been typically used to resolve failing parts at beginning-of-life. In this approach, we propose to use redundancy to repair critical parts that are most susceptible to aging, thereby optimizing end-of-life yield. Our methodology enables what would have been a very expensive and exhaustive hardware testing approach by identifying optimal repair corners via fast statistical simulations. The methodology takes into consideration reliability effects in the presence of random process variation. This in turn identifies critical repair parts for optimal yield and helps minimize the ever increasing field failure problem. © 2013 IEEE.