About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Macromolecular Chemistry and Physics
Paper
Liquid-crystalline nano-optomechanical actuator
Abstract
The synthesis and characterization of organic nanoparticles composed of a polymer network of azobenzene moieties and capable of reproducible, photoinduced mechanical actuation are reported. The molecules within the nanoparticles undergo co-ordinated, reversible isomerization between cis- and trans-conformations in response to ultraviolet and visible electromagnetic radiation, resulting in a reversible 20% height contraction of nanoparticles adsorbed on a substrate. The kinetics of the actuation response as a function of light intensity and duration are reported and closely match the molecular kinetics of azobenzene photoisomerization. The results support the proposed mechanism of co-ordinated molecular conformational changes resulting in observable nanoscale actuation. The synthesis and characterization of an opto-responsive nanoparticle capable of reversible shape change is described. Co-ordinated photoisomerization of azobenzene molecules imparts a conformational change to the polymer network of the nanoparticle and results in a measurable and reproducible shape change. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.