About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
AAAI 2024
Conference paper
Leveraging Opposite Gender Interaction Ratio as a Path towards Fairness in Online Dating Recommendations Based on User Sexual Orientation
Abstract
Online dating platforms have gained widespread popularity as a means for individuals to seek potential romantic relationships. While recommender systems have been designed to improve the user experience in dating platforms by providing personalized recommendations, increasing concerns about fairness have encouraged the development of fairnessaware recommender systems from various perspectives (e.g., gender and race). However, sexual orientation, which plays a significant role in finding a satisfying relationship, is underinvestigated. To fill this crucial gap, we propose a novel metric, Opposite Gender Interaction Ratio (OGIR), as a way to investigate potential unfairness for users with varying preferences towards the opposite gender. We empirically analyze a real online dating dataset and observe existing recommender algorithms could suffer from group unfairness according to OGIR. We further investigate the potential causes for such gaps in recommendation quality, which lead to the challenges of group quantity imbalance and group calibration imbalance. Ultimately, we propose a fair recommender system based on re-weighting and re-ranking strategies to respectively mitigate these associated imbalance challenges. Experimental results demonstrate both strategies improve fairness while their combination achieves the best performance towards maintaining model utility while improving fairness.