About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICML 2014
Conference paper
Latent variable copula inference for bundle pricing from retail transaction data
Abstract
2014 Bundle discounts are used by retailers in many industries. Optimal bundle pricing requires learning the joint distribution of consumer valuations for the items in the bundle, that is, how much they are willing to pay for each of the items. We suppose that a retailer has sales transaction data, and the corresponding consumer valuations are latent variables. We develop a statistically consistent and computationally tractable inference procedure for fitting a copula model over correlated valuations, using only sales transaction data for the individual items. Simulations and data experiments demonstrate consistency, scalability, and the importance of incorporating correlations in the joint distribution.