About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Kinetics and mechanism of amorphous hydrogenated silicon growth by homogeneous chemical vapor deposition
Abstract
A new method of amorphous hydrogenated silicon (a-Si) chemical vapor deposition is presented in which SiH4 is homogeneously decomposed at high temperature and pressure to produce films on low-temperature substrates having up to 30-at. % H and properties very similar to plasma-deposited material. Kinetic studies provide a film growth activation energy of 54 kcal/mole, confirming that SiH2 is the primary gas phase intermediate. A mechanism based on SiH2 chemistry is presented to account for the rapid surface reactions leading to a-Si growth and its possible relevance to the plasma deposition process is emphasized.