About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Superlattices and Microstructures
Paper
Kinetic modelling of electron tunneling processes in quantum dots coupled to field-effect transistors
Abstract
Transport of electrons in semiconductor nano-structures exhibits many features that are a consequence of quantum confinement and Coulomb blockade. A quantum dot coupled to a metal-oxide-semiconductor transistor's channel region is one example of such a structure with utility as a dense semiconductor memory. The memory state of this unit cell is a function of the number of electrons stored in the quantum dot and is sensed by the conduction in the channel. We describe a kinetic approach, based on a master equation, for modelling the injection and ejection of electrons into and from the quantum dot, and compare numerical results with experimental results for the silicon/silicon dioxide system where such memory structures have been achieved. © 1998 Academic Press Limited.