K.N. Tu
Materials Science and Engineering: A
A theory for inelastic transport through normal-metal-superconductor (NS) interfaces is presented that is applicable throughout the entire range of interface transmittances from the tunneling (low-interface transmittance) to the point-contact (high-interface transmittance) limits. This theory predicts that the excitation of a particular mode of energy Latin small letter h with strokeω leads to a step up in conductance at a voltage eV=Latin small letter h with strokeω+Δ in the tunneling limit, and a step down in conductance at a voltage eV=Latin small letter h with strokeω-Δ in the point-contact limit. A broad, flat distribution of possible energy-loss modes in the interface region results in a linear conduction increase for high-resistance contacts, and a linear conductance decrease for low-resistance contacts. This is in qualitative agreement with recent experiments on the high-Tc superconductors. © 1993 The American Physical Society.
K.N. Tu
Materials Science and Engineering: A
A.B. McLean, R.H. Williams
Journal of Physics C: Solid State Physics
K.A. Chao
Physical Review B
Arvind Kumar, Jeffrey J. Welser, et al.
MRS Spring 2000