About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Scientific Reports
Paper
In-situ characterization of ultrathin nickel silicides using 3D medium-energy ion scattering
Abstract
Epitaxial ultrathin films are of utmost importance for state-of-the-art nanoelectronic devices, such as MOSFET transistors and non-volatile memories. At the same time, as the film thickness is reduced to a few nanometers, characterization of the materials is becoming challenging for commonly used methods. In this report, we demonstrate an approach for in-situ characterization of phase transitions of ultrathin nickel silicides using 3D medium-energy ion scattering. The technique provides simultaneously depth-resolved composition and real-space crystallography of the silicide films using a single sample and with a non-invasive probe. We show, for 10 nm Ni films on Si, that their composition follows a normal transition sequence, such as Ni-Ni2Si-NiSi. However, the transition process is significantly different for samples with initial Ni thickness of 3 nm. Depth-resolved crystallography shows that the Ni films transform from an as-deposited disordered layer to an epitaxial silicide layer at the temperature of ~290 °C, significantly lower than previously reported. The high depth resolution of the technique permits us to determine the composition of the ultrathin films to be 38% Ni and 62% Si.