About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ACS AMI
Paper
Improving Carrier-Transport Properties of CZTS by Mg Incorporation with Spray Pyrolysis
Abstract
High nonradiative recombination, low diffusion length and band tailing are often associated with a large open circuit voltage deficit, which results in low efficiency of Cu2ZnSnS4 (CZTS) solar cells. Recently, cation substitution in CZTS has gained interest as a plausible solution to suppress these issues. However, the common substitutes, Ag and Cd, are not ideal due to their scarcity and toxicity. Other transition-metal candidates (e.g., Mn, Fe, Co, or Ni) are multivalent, which may form harmful deep-level defects. Magnesium, as one of the viable substitutes, does not have these issues, as it is very stable in +2 oxidation state, abundant, and nontoxic. In this study, we investigate the effect of Mg incorporation in sulfur-based Cu2ZnSnS4 to form Cu2MgxZn1-xSnS4 by varying x from 0.0 to 1.0. These films were fabricated by chemical spray pyrolysis and the subsequent sulfurization process. At a high Mg content, it is found that Mg does not replace Zn to form a quaternary compound, which leads to the appearance of the secondary phases in the sample. However, a low Mg content (Cu2Mg0.05Zn0.95SnS4) improves the power conversion efficiency from 5.10% (CZTS) to 6.73%. The improvement is correlated to the better carrier-transport properties, as shown by a lesser amount of the ZnS secondary phase, higher carrier mobility, and shallower acceptor defects level. In addition, the Cu2Mg0.05Zn0.95SnS4 device also shows better charge-collection property based on the higher fill factor and quantum efficiency despite having lower depletion width. Therefore, we believe that the addition of a small amount of Mg is another viable route to improve the performance of the CZTS solar cell.