True 3-D displays for avionics and mission crewstations
Elizabeth A. Sholler, Frederick M. Meyer, et al.
SPIE AeroSense 1997
Hot electron transport in silicon dioxide is examined with emphasis on current experimental and theoretical results. For oxide layers thicker than 100 Å, steady-state transport has been shown to control the carrier flow at all fields studied. The transition from a nearly thermal electron distribution at electric fields less than approximately 1.5 MV/cm to significantly hot distributions with average energies between 2 and 6 eV at higher fields of up to 16 MV/cm is discussed. The significance of nonpolar phonon scattering in controlling the dispersive transport at higher electric fields, thereby preventing runaway and avalanche breakdown, is reviewed. The transition from ballistic to steady-state transport on very thin oxides layers of less than 100 Å in thickness and the observation of single phonon scattering events are also discussed. © 1987.
Elizabeth A. Sholler, Frederick M. Meyer, et al.
SPIE AeroSense 1997
J.R. Thompson, Yang Ren Sun, et al.
Physica A: Statistical Mechanics and its Applications
M.A. Lutz, R.M. Feenstra, et al.
Surface Science
Michael Ray, Yves C. Martin
Proceedings of SPIE - The International Society for Optical Engineering