About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IRPS 1989
Conference paper
Hot-carrier induced instability of 0.5 μm CMOS devices patterned using synchrotron X-ray lithography
Abstract
The device characteristics and the radiation damage of n-channel and p-channel MOSFETs patterned using synchrotron X-ray lithography are examined. The effect of radiation damage caused by X-ray lithography on the device reliability during hot electron injection is investigated. Large amounts of positive oxide charge, neutral traps, and acceptor-like interface states are created by X-ray irradiation during the lithography process. Although several annealing steps are performed throughout the entire fabrication process, the radiation damage, particularly neutral traps, is not completely annealed out. The hot-electron-induced instability in p-channel MOSFETs is significantly increased due to the enhanced electron trapping in the oxide by residual traps. The effect of radiation on hot-electron-induced instability is found to be more severe in n+-poly buried-channel n-MOSFETs than in p+-poly surface-channel p-MOSFETs. However, the degradation in n-channel MOSFETs due to channel hot carriers is not significantly increased by X-ray lithography since the n-channel MOSFETs hot-carrier-induced degradation is dominated by interface state generation instead of electron trapping. These results suggest that p-channel MOSFETs, in addition to n-channel MOSFETs, need to be carefully examined in terms of hot-carrier-induced instability in CMOS VLSI circuits patterned using X-ray lithography.