About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
JACS
Paper
Highly Selective O-Phenylene Bisurea Catalysts for ROP: Stabilization of Oxyanion Transition State by a Semiflexible Hydrogen Bond Pocket
Abstract
Organocatalyzed ring-opening polymerization (ROP) is a versatile technique for synthesizing biodegradable polymers, including polyesters and polycarbonates. We introduce o-phenylene bisurea (OPBU) (di)anions as a novel class of organocatalysts that are fast, easily tunable, mildly basic, and exceptionally selective. These catalysts surpass previous generations, such as thiourea, urea, and TBD, in selectivity (kp/ktr) by 8 to 120 times. OPBU catalysts facilitate the ROP of various monomers, achieving high conversions (>95%) in seconds to minutes, producing polymers with precise molecular weights and very low dispersities (Đ ≈ 1.01). This performance nearly matches the ideal distribution expected from living polymerization (Poisson distribution). Density functional theory (DFT) calculations reveal that the catalysts stabilize the oxyanion transition state via a hydrogen bond pocket similar to the “oxyanion hole” in enzymatic catalysis. Both experimental and theoretical analyses highlight the critical role of the semirigid o-phenylene linker in creating a hydrogen bond pocket that is tight yet flexible enough to accommodate the oxyanion transition state effectively. These new insights have provided a new class of organic catalysts whose accessibility, moderate basicity, excellent solubility, and unparalleled selectivity and tunability open up new opportunities for controlled polymer synthesis.