About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICLR 2020
Conference paper
Generative Ratio Matching Networks
Abstract
Deep generative models can learn to generate realistic-looking images, but many of the most effective methods are adversarial and involve a saddlepoint optimization, which requires a careful balancing of training between a generator network and a critic network. Maximum mean discrepancy networks (MMD-nets) avoid this issue by using kernel as a fixed adversary, but unfortunately, they have not on their own been able to match the generative quality of adversarial training. In this work, we take their insight of using kernels as fixed adversaries further and present a novel method for training deep generative models that does not involve saddlepoint optimization. We call our method generative ratio matching or GRAM for short. In GRAM, the generator and the critic networks do not play a zero-sum game against each other, instead they do so against a fixed kernel. Thus GRAM networks are not only stable to train like MMD-nets but they also match and beat the generative quality of adversarially trained generative networks.