About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SoCS 2023
Conference paper
Generating SAS+ Planning Tasks of Specified Causal Structure
Abstract
Recent advances in data-driven approaches in AI planning demand more and more planning tasks. The supply, however, is somewhat limited. Past International Planning Competitions (IPCs) have introduced the de-facto standard benchmarks with the domains written by domain experts. The few existing methods for sampling random planning tasks severely limit the resulting problem structure. In this work we show a method for generating planning tasks of any requested causal graph structure, alleviating the shortage in existing planning benchmarks. We present an algorithm for constructing random SAS+ planning tasks given an arbitrary causal graph and offer random task generators for the well-explored causal graph structures in the planning literature. We further allow to generate a planning task equivalent in causal structure to an input SAS+ planning task. We generate two benchmark sets: 26 domains for well-explored causal graph structures and 42 domains for existing IPC domains. We evaluate both benchmark sets with the state-of-the-art optimal planners, showing the adequacy for adopting them as benchmarks in cost-optimal classical planning.