About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
CMIG
Paper
Fast anatomy segmentation by combining coarse scale multi-atlas label fusion with fine scale corrective learning
Abstract
Deformable registration based multi-atlas segmentation has been successfully applied in a broad range of anatomy segmentation applications. However, the excellent performance comes with a high computational burden due to the requirement for deformable image registration and voxel-wise label fusion. To address this problem, we investigate the role of corrective learning (Wang et al., 2011) in speeding up multi-atlas segmentation. We propose to combine multi-atlas segmentation with corrective learning in a multi-scale analysis fashion for faster speeds. First, multi-atlas segmentation is applied in a low spatial resolution. After resampling the segmentation result back to the native image space, learning-based error correction is applied to correct systematic errors due to performing multi-atlas segmentation in a low spatial resolution. In cardiac CT and brain MR segmentation experiments, we show that applying multi-atlas segmentation in a coarse scale followed by learning-based error correction in the native space can substantially reduce the overall computational cost, with only modest or no sacrificing segmentation accuracy.