About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
MRS Spring Meeting 1998
Conference paper
Experimental and theoretical study of structure-dielectric property relationships for polysilsesquioxanes
Abstract
Structures of polysilsesquioxanes {(R-SiO1.5)n with R=H, CH3, C6H5} in spin-on thin films are investigated in relation to their dielectric properties. IR spectroscopy in combination with results from quantum chemistry calculations shows that the initial hydrido-silsesquioxane films (cured to 250°C) exhibit more symmetric ring structures than those for methyl-silsesquioxanes. Moreover, IR spectra indicate that increasing the cure temperature above a critical value, which varies with the Si-R moiety, causes extensive three-dimensional cross-linking in silsesquioxanes via breakage of the Si-R bond and formation of networks of O-Si-O structures with a lower ring symmetry than the initial materials. Dielectric properties do not appear to vary with the structural symmetry about the O-Si-O moiety nor with the R substituents, but rather depend on the extent of three-dimensional cross-linking as seen by the loss of Si-R absorbance. Highly cross-linked silsesquioxanes show a higher dielectric value and no variation with temperature from -100°C to 150°C range, whereas a lower value and a negative temperature dependence are seen for dielectric constants of silsesquioxane samples with little loss of Si-R absorbance.