About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICPR 2012
Conference paper
Ensemble learning for change-point prediction
Abstract
In this paper, we propose a novel algorithm for the problem of predicting change-points. We assume that the causes for change-points can be characterized by the time interval between a change-point and its symptom. Based on this assumption, we first generate weak classifiers for capturing each characteristic, and then build an ensemble classifier with the weak classifiers. Experimental results show our algorithm improves the F-measure by 11% in the best case. © 2012 ICPR Org Committee.