About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICPR 2012
Conference paper
Map matching with Hidden Markov Model on sampled road network
Abstract
This paper presents a map matching method based on an ideal Hidden Markov Model (HMM) to find a sequence of roads that corresponds to a given sequence of raw GPS points. Our method is a simplification of the more-complex HMM-based method that maintains its capabilities to cope with the noises and sparsity of the raw GPS data. We test the method with the real-world raw GPS data that is publicly available. Experiments show that despite its simplicity, the proposed method performs sufficiently well under sparse GPS points and sparse road network data. © 2012 ICPR Org Committee.