About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE T-MTT
Paper
Enhanced skin effect for partial-element equivalent-circuit (PEEC) models
Abstract
In this paper, a skin-effect modeling approach is presented that is suitable for all frequency regimes of interest and therefore is most appropriate for transient interconnect analysis. Yet, the new formulation lends itself to a model that can be abstracted for use in conjunction with surface integral and finite difference-based electromagnetic tools for interconnect modeling. While a volume filament technique is not computationally feasible at high frequencies, where a fine discretization is necessary, the formulation that is presented avoids this difficulty by carefully casting the behavior of a conductor into the form of a global surface impedance, thus requiring fewer unknowns. Several examples illustrating the ability of the proposed model to accurately capture proximity and skin-effect behaviors will be shown. Interconnect resistance and inductance per-unit-length results are given and compared with those obtained using different models.