About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE Electron Device Letters
Paper
Enhanced Mobility Top-Gate Amorphous Silicon Thin-Film Transistor with Selectively Deposited Source/Drain Contacts
Abstract
Amorphous silicon thin-film transistors (TFT's), in a top-gate staggered electrode structure, have been prepared using selectively deposited doped silicon contact layers, formed in-situ by plasma-enhanced chemical vapor deposition (PECVD). Selective deposition reduces the number of processing steps and assures the formation of low-resistance contacts. Devices fabricated with two photomasks and one plasma deposition step show saturation and linear mobilities as high as 1.1 and 0.9 cm2/V s, respectively, with threshold voltages between 3 and 6 V. On/off ratios are ≥ 106, with a subthreshold slope of 0.8 V/decade. The mobilities are at least a factor of 2 higher than previously reported for top-gate structures, and are similar to values reported for bottom-gate (inverted staggered) TFT's. © 1992 IEEE