About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Applied Physics
Paper
Electrical transport properties of Cu3Ge thin films
Abstract
Resistivity, Hall-effect, and magnetoresistance measurements have been performed in the temperature range 4.2-300 K on thin films of the ε1-Cu3Ge phase that has a long-range ordered monoclinic crystal structure. The results show that ε1-Cu 3Ge is a metal with a room-temperature resistivity of ∼6 μΩ cm. The temperature dependence of resistivity follows the Block-Grüneisen model with a Debye temperature of 240±25 K. The density of charge carriers, which are predominantly holes, is ∼8×1022/cm3 and is independent of temperature and film thickness. The Hall mobility at 4.2 K is ∼ 132 cm2/V s. The elastic mean free path is found to be ∼1200 Å, which is surprisingly large for a metallic compound film. The results show that the residual resistivity is dominated by surface scattering rather than grain-boundary scattering. An increase in Ge concentration above 25 at. % (but less than 35 at. %) is found to affect the resistivity and Hall mobility, but not the density of charge carriers.