About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE Electron Device Letters
Paper
Effects of nanoscale contacts to graphene
Abstract
Understanding and optimizing transport between metal contacts and graphene is one of the foremost challenges for graphene devices. In this letter, we present the first results on the effects of reducing contact dimensions to the nanoscale in single-layer graphene transistors. Using noninvasive voltage probes to the graphene channel, the contact resistance was extracted and observed to increase dramatically at contact lengths below 200 nm. Also affected was the extrinsic transconductance, reducing by more than 70% when scaling the contacts from 200 to 50 nm. No significant change in performance per unit width was observed when reducing the contact/device width from 500 to 80 nm. These results provide key insights into the ultimate scalability of graphene transistors, particularly when considering them for a densely integrated technology. © 2011 IEEE.