Publication
NeurIPS 2017
Conference paper

Dilated recurrent neural networks

Abstract

Learning with recurrent neural networks (RNNs) on long sequences is a notoriously difficult task. There are three major challenges: 1) complex dependencies, 2) vanishing and exploding gradients, and 3) efficient parallelization. In this paper, we introduce a simple yet effective RNN connection structure, the DILATEDRNN, which simultaneously tackles all of these challenges. The proposed architecture is characterized by multi-resolution dilated recurrent skip connections, and can be combined flexibly with diverse RNN cells. Moreover, the DILATEDRNN reduces the number of parameters needed and enhances training efficiency significantly, while matching state-of-the-art performance (even with standard RNN cells) in tasks involving very long-term dependencies. To provide a theory-based quantification of the architecture's advantages, we introduce a memory capacity measure, the mean recurrent length, which is more suitable for RNNs with long skip connections than existing measures. We rigorously prove the advantages of the DILATEDRNN over other recurrent neural architectures. The code for our method is publicly available1.

Date

04 Dec 2017

Publication

NeurIPS 2017

Authors

Share