About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ACS Sensors
Paper
Device noise reduction for silicon nanowire field-effect-Transistor based sensors by using a schottky junction gate
Abstract
The sensitivity of metal oxide semiconductor field-effect transistor (MOSFET) based nanoscale sensors is ultimately limited by noise induced by carrier trapping/detrapping processes at the gate oxide/semiconductor interfaces. We have designed a Schottky junction gated silicon nanowire field-effect transistor (SiNW-SJGFET) sensor, where the Schottky junction replaces the noisy oxide/semiconductor interface. Our sensor exhibits significantly reduced device noise, 2.1 × 10 -9 V 2 μm 2 /Hz at 1 Hz, compared to reference devices with the oxide/semiconductor interface operated at both inversion and depletion modes. Further improvement can be anticipated by wrapping the nanowire by such a Schottky junction, thereby eliminating all oxide/semiconductor interfaces. Hence, a combination of the low-noise SiNW-SJGFET device with a sensing surface of the Nernstian response limit holds promises for future high signal-To-noise ratio sensor applications.