Saurabh Paul, Christos Boutsidis, et al.
JMLR
The power of high-level languages lies in their abstraction over hardware and software complexity, leading to greater security, better reliability, and lower development costs. However, opaque abstractions are often show-stoppers for systems programmers, forcing them to either break the abstraction, or more often, simply give up and use a different language. This paper addresses the challenge of opening up a high-level language to allow practical low-level programming without forsaking integrity or performance. The contribution of this paper is three-fold: 1) we draw together common threads in a diverse literature, 2) we identify a framework for extending high-level languages for low-level programming, and 3) we show the power of this approach through concrete case studies. Our framework leverages just three core ideas: extending semantics via intrinsic methods, extending types via unboxing and architectural-width primitives, and controlling semantics via scoped semantic regimes. We develop these ideas through the context of a rich literature and substantial practical experience. We show that they provide the power necessary to implement substantial artifacts such as a high-performance virtual machine, while preserving the software engineering benefits of the host language. The time has come for high-level low-level programming to be taken more seriously: 1) more projects now use high-level languages for systems programming, 2) increasing architectural heterogeneity and parallelism heighten the need for abstraction, and 3) a new generation of high-level languages are under development and ripe to be influenced. Copyright © 2009 ACM.
Saurabh Paul, Christos Boutsidis, et al.
JMLR
C.A. Micchelli, W.L. Miranker
Journal of the ACM
Joxan Jaffar
Journal of the ACM
Kenneth L. Clarkson, Elad Hazan, et al.
Journal of the ACM