About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review Letters
Paper
Defect self-annihilation in surfactant-mediated epitaxial growth
Abstract
Islanding and misfit relaxation are obstacles for growth of heteroepitaxial films. Surfactants not only inhibit islanding, but also control defect structure. Growth of Ge on Si(111) was mediated by a monolayer of Sb floating on the surface. Upon exceeding the critical thickness, Shockley partial dislocations initially thread to the surface and then act as nucleation sites for complementary partial dislocations which glide down to the interface, leaving behind a fully relaxed, defect-free, epitaxial Ge film. Thus, the seemingly incompatible goals of strain relief and defect-free growth can be met by a surfactant-modified growth front. © 1991 The American Physical Society.