About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Abstract
The role of nitrogen in corrosion and passivation of thin Fe–N films was studied. Sputtered films with different levels of nitrogen were characterized for composition, conductivity, stress, and crystallinity. Corrosion and passivation of the films were evaluated by electrochemical measurements combined with in situ ellipsometry and ex situ x–ray photoelectron spectroscopy. The results indicate that in deaerated solutions the primary action of N is to reduce the catalytic activity of the surface for the hydrogen reaction and thereby reduce corrosion. In aerated solutions the corrosion rate increases with N content. Kinetics of the protective oxide formation as a function of potential, percent N, and the presence of borate buffer are discussed in detail. The work is relevant to the behavior of oxide–free Fe–N surfaces in contact with mild, nearly neutral electrolytes, such as could be used in fabrication of magnetic recording heads. © 1991, The Electrochemical Society, Inc. All rights reserved.