About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Molecular Physics
Paper
Conflgurational bias monte carlo: A new sampling scheme for flexible chains
Abstract
We propose a novel approach that allows efficient numerical simulation of systems consisting of flexible chain molecules. The method is especially suitable for the numerical simulation of dense chain systems and monolayers. A new type of Monte Carlo move is introduced that makes it possible to carry out large scale conformational changes of the chain molecule in a single trial move. Our scheme is based on the selfavoiding random walk algorithm of Rosenbluth and Rosenbluth. As an illustration, we compare the results of a calculation of mean-square end to end lengths for single chains on a two-dimensional square lattice with corresponding data gained from other simulations. © 1992 Taylor and Francis Ltd.