About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Computing Camera Viewpoints in an Active Robot Work Cell
Abstract
This paper presents a dynamic sensor-planning system that is capable of planning the locations and settings of vision sensors for use in an environment containing objects moving in known ways. The key component of this research is the computation of the camera position, orientation, and optical settings to be used over a time interval. A new algorithm is presented for viewpoint computation which ensures that the feature-detectability constraints of focus, resolution, field of view, and visibility are satisfied. A five-degree-of-freedom Cartesian robot carrying a CCD camera in a hand/eye configuration and surrounding the work cell of a Puma 560 robot was constructed for performing sensor-planning experiments. The results of these experiments, demonstrating the use of this system in a robot work cell, are presented.
Related
Conference paper
Spottune: Transfer learning through adaptive fine-tuning
Conference paper