About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Optics Express
Paper
Compact angled multimode interference duplexers for multi-gas sensing applications
Abstract
A compact, low-loss 2 × 1 angled-multi-mode-interference-based duplexer is proposed as an optical component for integrating several wavelengths with high coupling efficiency. The self-imaging principle in multimode waveguides is exploited to combine two target wavelengths, corresponding to distinctive absorption lines of important trace gases. The device performance has been numerically enhanced by engineering the geometrical parameters, offering trade-offs in coupling efficiency ratios. The proposed designs are used as versatile duplexers for detecting gas combinations such as ammonia-methane, ammonia-ethane, and ammonia-carbon dioxide, enabling customization for specific sensing applications. The duplexers designed are then fabricated and characterized, with a special focus on assessing the impact of the different target wavelengths on coupling efficiency.