About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE Access
Paper
Chip Power Scaling in Recent CMOS Technology Nodes
Abstract
This paper tracks the scaling of total chip power at constant frequency (i.e., energy-per-operation) through the last few CMOS nodes. The focus is on high-performance microprocessors. To evaluate the progression of chip power, Intel's Core-i7 (Intel's highest performance consumer microprocessor manufactured in the highest performance CMOS technology node) was used as the benchmark. Core-i7 has been manufactured for eight generations starting in the 45-nm node and continuing through the 14++ node. This paper argues that in the more recent nodes, the total chip power at constant frequency (energy-per-operation) has scaled much less than that of the earlier CMOS nodes. The early 14-nm technology exhibited particularly poor power scaling, and in fact, the technology was improved by increasing the device current and relaxation of the contacted gate pitch in 14++. Early product data in 10 nm points to issue in dropping the chip power (at constant frequency) relative to the previous node (14++), which may challenge the power-performance justification for scaling to the 10 nm node and beyond. Improving chip power scaling (energy-per-operation) in upcoming nodes is critical as a key part of the value proposition for continued CMOS scaling, especially as applied to high-performance microprocessors.