About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Chemistry of Materials
Paper
Bi2Te3 Plates with Single Nanopore: The Formation of Surface Defects and Self-Repair Growth
Abstract
Self-assembly has proven to be a powerful method of preparing structurally intricate nanostructures. In this work, we design a nanoscale "Chinese Coin" based on Bi2Te3 nanoplates (NPs) by using a simple and scalable solution process; i.e., a single pore is introduced on a hexagonal/round plate similar to a fender washer. The diameter of the nanopores is well controlled within the range of 5-100 nm and depends strongly on the reaction time and heating temperatures, suggesting a kinetics related mechanism. Moreover, the thermal evolution of stable Bi2Te3 plate-pore structures was systematically explored to elucidate the underlying energetics of the V2-VI3 chalcogenides. We found that the nanopore is initiated near the middle of the plate, followed by the successive removal of Bi2Te3 slices from the high edge-energy pore with increased temperatures (70-150 °C), leading finally to the formation of a stable nanopore. The morphology of the pore as well as the local lattice crystallinity was studied using high-resolution transmission electron microscopy and first-principles calculations. On the basis of these observations, a self-repair mechanism for pores under the stability diameter is proposed from the viewpoint of reaction kinetics.