About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Advanced Materials
Paper
2D Chalcogenide Nanoplate Assemblies for Thermoelectric Applications
Abstract
Engineered atomic dislocations have been used to create a novel, Sb2Te3 nanoplate-like architecture that exhibits a unique antisymmetric chirality. High-resolution transmission electron microscopy (HRTEM) coupled with atomic force microscopy and X-ray photoelectron spectroscopy reveals the architectures to be extremely well ordered with little residual strain. Surface modification of these topologically complex macrostructures (≈3 µm) has been achieved by direct growth of metallic Ag nanoparticles onto the edge sites of the Sb2Te3. Again, HRTEM shows this nanoparticle decoration to be atomically sharp at the boundaries and regularly spaced along the selvedge of the nanostructure. Transport experiments of densified films of these assemblies exhibit marked increases in carrier density after nanoengineering, yielding 3.5 × 104 S m−1 in electrical conductivity. An increased Seebeck coefficient by 20% in parallel with electrical conductivity is also observed. This gives a thermoelectric power factor of 371 µW m−1 K−2, which is the highest value for a flexible, freestanding film to date. These results suggest an entirely new direction in the search for wearable power harvesters based on topologically complex, low-dimensional nanoassemblies.