About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICPR 2012
Conference paper
Bayesian implementation of a Lagrangian macroscopic traffic flow model
Abstract
In this paper we apply state-estimation techniques to a model which describes the time-evolution of observed traffic patterns. We develop a switched linear state-space formulation of a macroscopic traffic flow model and then use Sequential Monte Carlo filtering and regime-based Kaiman Filter (RKF) to reconstruct the underlying traffic patterns, where observations are provided by a microscopic traffic flow simulation which runs in parallel with our model. © 2012 ICPR Org Committee.