About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Materials Research
Paper
Atomic scale oxide superlattices grown by RHEED controlled pulsed laser deposition
Abstract
By depositing thin films under conditions where intensity oscillations are observed in RHEED (reflection high-energy electron diffraction) spots, unit cell level multilayers of SrTiO3/BaTiO3 structures have been grown by pulsed laser ablation. High resolution TEM (transmission electron microscopy) and STEM (scanning transmission electron microscopy) observations of the deposits show that epitaxial multilayers with layer thicknesses of 1, 2, 4, 8, and 16 unit cells can be grown on [100] orientation SrTiO3 substrates. The superlattices show partial intermixing of the Sr and Ba for layer thicknesses less than 8 unit cells, but incomplete intermixing occurs even when the layers are only a single unit cell thick. From observations of the degree of intermixing at different depths in the deposit, it was determined that most of the intermixing takes place during deposition and not during subsequent annealing of the deposit. The 16 and 8 unit cell thick BaTiO3 layers were found to be tetragonal with the c-axis of the layers oriented normal to the substrate but with the a-axis strained to coherently match the SrTiO3 layers. © 1994, Materials Research Society. All rights reserved.