About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
KAIS
Paper
Answering linear optimization queries with an approximate stream index
Abstract
We propose a SAO index to approximately answer arbitrary linear optimization queries in a sliding window of a data stream. It uses limited memory to maintain the most "important" tuples. At any time, for any linear optimization query, we can retrieve the approximate top-K tuples in the sliding window almost instantly. The larger the amount of available memory, the better the quality of the answers is. More importantly, for a given amount of memory, the quality of the answers can be further improved by dynamically allocating a larger portion of the memory to the outer layers of the SAO index. © Springer-Verlag London Limited 2008.