About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ESSCIRC 2018
Conference paper
A Wide Dynamic Range Sparse FC-DNN Processor with Multi-Cycle Banked SRAM Read and Adaptive Clocking in 16nm FinFET
Abstract
Always-on classifiers for sensor data require a very wide operating range to support a variety of real-time workloads and must operate robustly at low supply voltages. We present a 16nm always-on wake-up controller with a fully-connected (FC) Deep Neural Network (DNN) accelerator that operates from 0.4-1 V. Calibration-free automatic voltage/frequency tuning is provided by tracking small non-zero Razor timing-error rates, and a novel timing-error driven sync-free fast adaptive clocking scheme provides resilience to on-chip supply voltage noise. The model access burden of neural networks is relaxed using a multicycle SRAM read, which allows memory voltage to be reduced at iso-throughput. The wide operating range allows for high performance at 1.36GHz, low-power consumption down to 750μW and state-of-the-art raw efficiency at 16-bit precision of 750 GOPS/W dense, or 1.81 TOPS/W sparse.