About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
VLDB
Paper
A probabilistic optimization framework for the empty-answer problem
Abstract
We propose a principled optimization-based interactive query relaxation framework for queries that return no answers. Given an initial query that returns an empty answer set, our framework dynamically computes and suggests alternative queries with less conditions than those the user has initially requested, in order to help the user arrive at a query with a non-empty answer, or at a query for which no matter how many additional conditions are ignored, the answer will still be empty. Our proposed approach for suggesting query relaxations is driven by a novel probabilistic framework based on optimizing a wide variety of application-dependent objective functions. We describe optimal and approximate solutions of different optimization problems using the framework. We analyze these solutions, experimentally verify their efficiency and effectiveness, and illustrate their advantage over the existing approaches. © 2013 VLDB Endowment.