About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICAPS 2018
Conference paper
A novel iterative approach to top-k planning
Abstract
While cost-optimal planning aims at finding one best quality plan, top-k planning deals with finding a set of solutions, such that no better quality solution exists outside that set. We propose a novel iterative approach to top-k planning, exploiting any cost-optimal planner and reformulating a planning task to forbid exactly the given set of solutions. In addition, to compare to existing approaches to finding top-k solutions, we implement the K* algorithm in an existing PDDL planner, creating the first K* based solver for PDDL planning tasks. We empirically show that the iterative approach performs better for up to a large required size solution sets (thousands), while K* based approach excels on extremely large ones.