Chidanand Apté, Fred Damerau, et al.
ACM Transactions on Information Systems (TOIS)
We compute a sparse solution to the classical least-squares problem minx||Ax-b||2, where A is an arbitrary matrix. We describe a novel algorithm for this sparse least-squares problem. The algorithm operates as follows: first, it selects columns from A, and then solves a least-squares problem only with the selected columns. The column selection algorithm that we use is known to perform well for the well studied column subset selection problem. The contribution of this article is to show that it gives favorable results for sparse least-squares as well. Specifically, we prove that the solution vector obtained by our algorithm is close to the solution vector obtained via what is known as the "SVD-truncated regularization approach". © 2013 Elsevier B.V.
Chidanand Apté, Fred Damerau, et al.
ACM Transactions on Information Systems (TOIS)
Kaoutar El Maghraoui, Gokul Kandiraju, et al.
WOSP/SIPEW 2010
Fan Jing Meng, Ying Huang, et al.
ICEBE 2007
Thomas M. Cover
IEEE Trans. Inf. Theory